
Optimization of
Robust Asynchronous Threshold Networks

Using Local Relaxation Techniques

	
	

Cheoljoo Jeong* Steven M. Nowick

Computer Science Department

Columbia University
*[now at Cadence Design Systems]

Outline

1.  Introduction

2.  Background: Asynchronous Threshold Networks

3.  Gate-Level Relaxation

4.  Block-Level Relaxation

5.  Experimental Results

6.  Conclusions and Future Work

1

Recent Challenges in Microelectronics Design

•  Reliability challenge
–  Variability issues in deep submicron technology

•  process, temperature, voltage
•  noise, crosstalk

–  Dynamic voltage scaling

•  Communication challenge
–  Increasing disparity between gate and wire delay

•  Productivity challenge
–  Increasing system complexity + heterogeneity
–  Shrinking time to market, timing closure issues
–  Even when IP blocks are used, interface timing verification is difficult

2

Benefits and Challenges of Asynchronous Circuits

•  Potential benefits:
–  Mitigates timing closure problem
–  Low power consumption
–  Low electromagnetic interference (EMI)
–  Modularity, “plug-and-play” composition
–  Accommodates timing variability

•  Challenges:
–  Robust design is required: hazard-freedom
–  Area overhead (sometimes)
–  Lack of CAD tools
–  Lack of systematic optimization techniques

3

Asynchronous Threshold Networks

•  Asynchronous threshold networks
–  One of the most robust asynchronous circuit styles
–  Based on delay-insensitive encoding

•  Communication: robust to arbitrary delays
•  Logic block design: imposes very weak timing constraints (1-sided)

•  Simple example: OR2

a0
a1

b0

b1

z1

z0

z
a

b

C

C

C

C

Boolean OR2 gate Async dual-rail threshold network for OR2
4

Asynchronous Threshold Networks
in Emerging Technologies

•  Ultra-Low Voltage (ULV): extreme variability
–  8051 microcontroller - extreme PVT variability at subthreshold voltages
–  K.-L. Chang et al., “Synchronous-Logic and Asynchronous-Logic 8051 Microcontroller Cores for

Realizing the Internet of Things: a Comparative Study on Dynamic Voltage Scaling and Variation
Effects,” IEEE J. Emerg. Sel. Topics Circuits Systems., vol. 3:1, 2013, pp. 23-34.

•  Space Applications: extreme environments
–  8-bit data transfer system for space flights

–  Fully operational over 4000 C temperature range (-1750 to +2250 C)
–  P. Shepherd et al., “A Robust, Wide-Temperature Data Transmission System for Space Environments,”

Proc. IEEE Aerospace Conf. (AERO), 2013, pp. 1812-1819.

•  Nano-Magnetic Logic Circuits:
–  M. Vacca, M. Graziano and M. Zamboni, “Asynchronous Solutions for Nano-Magnetic Logic Circuits,”

ACM Journal on Emerging Technologies in Computing Systems (JETC), vo. 7:4, 15:1-15:18 (2011).

•  Quantum-Dot Cellular Automata (QCA):
–  M. Choi et al., “Efficient and Robust Delay-Insensitive QCA (Quantum-Dot Cellular Automata) Design,”

Proc. IEEE Int. Symp. Defect and Fault-Tolerance in VLSY Systems (DFT), 2006, pp. 80-88. 5

Challenges and Overall Research Goals

•  Challenges in asynchronous threshold network synthesis
–  Large area and latency overheads
–  Few existing optimization techniques
–  Even less support for CAD tools

•  Overall Research Agenda:
–  Develop systematic optimization techniques and CAD tools

 for highly-robust asynchronous threshold networks

–  Support design-space exploration:
 automated scripts, target different cost functions

–  Current optimization targets: area + delay + delay-area tradeoffs

–  Future extensions: power (straightforward)

6

Overall Research Goals

Two automated optimization techniques proposed

1. Relaxation algorithms: multi-level optimization
–  Existing synthesis approaches are conservative = over-designed

–  Approach: selective use of eager-evaluation logic
•  without affecting overall circuit’s timing robustness

–  Can apply at two granularities:
•  gate-level [Jeong/Nowick ASPDAC-07, Zhou/Sokolov/Yakovlev ICCAD-06]

•  block-level [Jeong/Nowick Async-08]

7

C. Jeong and S.M. Nowick, “Optimization of Robust Asynchronous Circuits by Local Input Completeness
Relaxation,” Proc. Of IEEE Asia and South Pacific Design Automation Conference (ASPDAC), 2007.

C. Jeong and S.M. Nowick, “Block-Level Relaxation for Timing-Robust Asynchronous Circuits Based on
Eager Evaluation,” Proc. Of IEEE Int. Symp. on Asynchronous Circuits and Systems (ASYNC), 2008.

Overall Research Goals (cont.)

2. Technology mapping algorithms
–  First general and systematic technology mapping for

 robust asynchronous threshold networks

–  Evaluated on substantial benchmarks:
•  > 10,000 gates, > 1000 inputs/outputs

–  Use fully-characterized industrial cell library (Theseus Logic):
•  slew rate, loading, distinct i-to-o paths/rise vs. fall transitions

–  Significant average improvements:
•  Delay: 31.6%, Area: 9.5% (runtime: 6.2 sec)

8

“ATN_OPT” CAD Package: implements both steps
 downloadable (for Linux) + tutorials/benchmarks

URL: http://www.cs.columbia.edu/~nowick/asynctools

C. Jeong and S.M. Nowick, “Technology Mapping and Cell Merger for Asynchronous Threshold
Networks,” IEEE Trans. on Computer-Aided Design (TCAD), vol. 27:4, pp. 659-672 (April 2008).

Basic Synthesis Flow
(Theseus Logic/Camgian Networks)

Single-rail Boolean network

Dual-rail async threshold network

simple dual-rail expansion
(delay-insensitive encoding)

Considered as
abstract multi-valued circuit

Instantiated Boolean circuit
(robust, unoptimized)

9

New Optimized Synthesis Flow

Relaxation
(i.e. relaxed dual-rail expansion)

Technology mapping

Single-rail Boolean network

“Relaxed” dual-rail async threshold network

Optimally-mapped dual-rail async threshold
 network

optimized

optimized

10

New Optimized Synthesis Flow

Relaxation
(i.e. relaxed dual-rail expansion)

Technology mapping

Single-rail Boolean network

“Relaxed” dual-rail async threshold network

Optimally-mapped dual-rail async threshold
 network

optimized

optimized

11

Focus of this talk

Outline

1.  Introduction

2.  Background: Asynchronous Threshold Networks

3.  Gate-Level Relaxation

4.  Block-Level Relaxation

5.  Experimental Results

6.  Conclusions and Future Work

12

Single-Rail Boolean Networks

•  Boolean Logic Network: Starting point for dual-rail circuit synthesis

–  Modelled using three-valued logic with {0, 1, NULL (N)}

•  0/1 = data values, NULL = no data (invalid data)

–  Computation alternates between DATA and NULL phases

–  DATA (Evaluate) phase:

•  outputs have DATA values only after all inputs have DATA values

–  NULL (Reset) phase:
•  outputs have NULL values only after all inputs have NULL values

z
a

b

Boolean OR gate

3-valued
output

3-valued
inputs

N
N

N

13

Delay-Insensitive Encoding

•  Approach:
–  Single Boolean signal is represented by two wires

–  Goal: map abstract Boolean netlist to robust dual-rail
 asynchronous circuit

a
a0

a1

a1 a0 a

0 0 NULL

0 1 0

1 0 1

1 1 Not allowed

dual-rail
expansion

 - Motivation: robust data communication

Encoding table

spacer

valid
data

invalid

14

Dual-Rail Asynchronous Circuits

a0
a1

b0

b1

z1

z0

z
a

b

Boolean OR gate DIMS-style dual-rail OR circuit

•  DIMS-Style Dual-Rail Expansion:
–  “delay-insensitive minterm synthesis” style
–  Single Boolean gate: expanded into 2-level network

3-valued
output

dual-rail
output dual-rail

inputs 3-valued
inputs

C

C

C

complete set
of minterms

C

1-rail

0-rail

Dual-Rail Asynchronous Circuits (cont.)

a0
a1

b0
b1

z1

z0

z
a

b

Boolean OR gate NCL-style dual-rail OR circuit

•  NCL-Style Dual-Rail Expansion (Theseus Logic):
–  Single Boolean gate: expanded into two NCL gates
–  Allows more optimized mapping (to custom library)

3-valued
output

dual-rail
output dual-rail

inputs 3-valued
inputs

THAND

complex library cell
1-rail

0-rail

C

Summary: Existing Synthesis Approach
•  Starting point: single-rail abstract Boolean network (3-valued)
•  Approach: performs dual-rail expansion of each gate

–  Use 'template-based' mapping

•  End point: unoptimized dual-rail asynchronous threshold network

•  Result: timing-robust asynchronous netlist

C
C
C
C

C
C
C
C

C
C
C
C

b1

a1

b1

a1

b0

a0

b0

a0

a

b

x

y

z

Boolean logic network Dual-rail asynchronous threshold network

z0

z1

17

Hazard Issues

•  Ideal Goal = Delay-Insensitivity (delay model)
–  Allows arbitrary gate and wire delay

•  circuit operates correctly under all conditions

–  Most robust design style
•  when circuit produces new output, all gates stable

 = “timing robustness”

•  “Orphans” = hazards to delay-insensitivity
–  “unobservable” signal transition sequences

–  Wire orphans: unobservable wires at fanout

–  Gate orphans: unobservable paths at fanout

18

Hazard Issues

•  Wire orphan example:

Wire orphan example

0

0
0

primary
outputs

wire orphan! =
unobservable wire transition

(at fanout point)

C

C

19

If unobservable wire too slow, will interfere with next data item (glitch)

Hazard Issues

•  Gate orphan example:

Gate orphan example

a0
b0

a1
b1

z1

z0
0

0

gate orphan! = unobservable path through 1+ gates (at fanout point)

0

0

C

C

20
If unobservable path too slow, will interfere with next data item (glitch)

Hazard Issues: Summary

•  Wire orphans: typically not a problem in practice
–  unobserved signal transition on wire (at fanout point)

–  Solution: handle during physical synthesis (e.g. Theseus Logic)
•  enforce simple 1-sided timing constraint:

–  similar to “quasi-delay-insensitivity” (QDI)

•  Gate orphans: difficult to handle
–  unobserved signal transition on path (at fanout point)

–  can result in unexpected glitches: if delays too long

–  harder to overcome with physical design tools

invariant of the proposed optimization algorithms:

ensure no gate orphans introduced
21

Outline

1.  Introduction

2.  Background: Asynchronous Threshold Networks

3.  Gate-Level Relaxation

4.  Block-Level Relaxation

5.  Experimental Results

6.  Conclusions and Future Work

22

Overview of Relaxation

•  Relaxation: Multi-level optimization
–  Allows more efficient dual-rail expansion using eager-evaluating logic
–  Idea: selectively replace some gates by eager blocks

•  either at gate-level or block-level
–  Advantage: if carefully performed, no loss of overall circuit robustness

•  Proposed flow

Relaxation

Single-rail Boolean network

Relaxed dual-rail async threshold network optimized

23

Input Completeness

•  A dual-rail implementation of a Boolean gate is
input-complete w.r.t. its input signals if an output changes
only after all the inputs arrive.

a0
b0

a1
b1

z1

z0

z
a

b

Boolean OR gate Input-complete dual-rail OR network

(input complete w.r.t. input signals a and b)

C

C

C

C

Enforcing input completeness for every gate is the traditional
synthesis approach to avoid hazards (i.e. gate orphans).

24

Input Incompleteness

•  A dual-rail implementation of a Boolean gate is
input-incomplete w.r.t. its input signals (“eager-evaluating”),
if the output can change before all inputs arrive.

a0
b0

a1
b1

z1

z0

z
a

b

Boolean OR gate Input-incomplete dual-rail OR network

25

Gate-Level Relaxation Example #1

•  Existing approach to dual-rail expansion is too restrictive.
–  Every Boolean gate is fully-expanded into an input-complete block.

C
C
C
C

C
C
C
C

C
C
C
C

b1

a1

b1

a1

b0

a0

b0

a0

a

b

x

y

z

z0

z1

input-complete
dual-rail block

Boolean network Dual-rail circuit with full expansion (no relaxation)
26

Gate-Level Relaxation Example #1 (cont.)

•  Not every Boolean gate needs to be expanded into
 input-complete block.

a

b

x

y

z

Boolean network

C
C
C
C

C
C
C
C

b1

a1

b1

a1

b0

a0

b0

a0

z0

z1

Relaxed expansion Relaxed dual-rail circuit

Robust expansion

Optimized dual-rail circuit is still timing-robust (gate-orphan-free) 27

Gate-Level Relaxation Example #2

a

b
c

d

i

j

k

l

m

x

y

z

•  Different choices may exist in relaxation.

PICKED = relaxed

PICKED = relaxed

Relaxation of Boolean network with two relaxed gates

28

Gate-Level Relaxation Example #2 (cont.)

a

b
c

d

i

j

k

l

m

x

y

z

•  Different choices may exist in relaxation.

PICKED = relaxed PICKED = relaxed

Relaxation of Boolean network with four relaxed gates

29

Gate-Level Relaxation: Summary

•  Conservative approach:
–  Every path from a gate to a primary output must contain only

 robust (input-complete) gates

•  Optimized approach: [Nowick/Jeong ASPDAC-07, Zhou/Sokolov/Yakovlev ICCAD-06]
–  At least one path from each gate to some primary output must contain

only robust (i.e. input-complete) gates (Theorem)

–  … all other gates can be safely ‘relaxed’ (I.e. input-incomplete)

Resulting implementation has no loss of timing robustness
(remains “gate-orphan-free”)

30

Which Gates Can Safely Be Relaxed?

•  Localized theorem: gate relaxation [Jeong/Nowick ASPDAC-07]

 A dual-rail implementation of a Boolean network is
 timing-robust (i.e. gate-orphan-free) if and only if, for
 each signal, at least one of its fanout gates is
 input-complete (I.e. not relaxed).

•  Example:

a

b

x

y

z

Boolean network

31

Which Gates Can Safely Be Relaxed?

a

b

x

y

z

Two fanout gates for signal a Boolean network

32

•  Localized theorem: gate relaxation [Jeong/Nowick ASPDAC-07]

 A dual-rail implementation of a Boolean network is
 timing-robust (i.e. gate-orphan-free) if and only if, for
 each signal, at least one of its fanout gates is
 input-complete (i.e. not relaxed).

•  Example:

Which Gates Can Safely Be Relaxed?

a

b

x

y

z

Two fanout gates for signal a

Only one of two fanout gates must be input-complete.

Boolean network

not relaxed

•  Localized theorem:
 Dual-rail implementation of a Boolean network is
 timing-robust (i.e. gate-orphan-free) if and only if, for
 each signal, at least one of its fanout gates is
 input complete (I.e. not relaxed).

•  Example:

33

[Jeong/Nowick ASPDAC-07]

Problem Definition

•  The Input Completeness Relaxation Problem
–  Input: single-rail Boolean logic network
–  Output: relaxed dual-rail asynchronous circuit, which is
 still timing-robust

•  Overview of the Proposed Algorithm
–  Relaxes overly-restrictive style of existing approaches

•  Performs selective relaxation of individual nodes

–  Targets three cost functions:
•  Number of relaxed-gates
•  Area after dual-rail expansion
•  Critical path delay

–  Based on unate covering framework:
•  Each gate output must be covered by at least one fanout gate.

Z

Relaxation Algorithm
•  Algorithm Sketch

–  Step 1: setup covering table
•  For each pair <u, v>, signal u fed into gate v:

–  Add u as a covered element (row)

–  Add v as a covering element (column)

–  Step 2: solve unate covering problem
–  Step 3: generate dual-rail threshold network

a

b
Y

X
x

y

X Y Z
a 1 1 0
b 1 1 0
x 0 0 1
y 0 0 1

Boolean network
Covering table

signals

gates

Targeting Different Cost Functions

•  Maximization of Number of Relaxed Gates
–  Weight of a gate = 1

•  Minimization of Area of Dual-Rail Circuit
–  Weight of a gate = area penalty for not relaxing the gate

•  Criticial Path Delay Optimization in Dual-Rail Circuit
–  Find a critical path in non-relaxed dual-rail circuit
–  Assign higher weights to critical gates
–  Assign lower weights to non-critical gates
–  GOAL: more relaxation of critical path gates

Outline

1.  Introduction

2.  Background: Asynchronous Threshold Networks

3.  Gate-Level Relaxation

4.  Block-Level Relaxation

5.  Experimental Results

6.  Conclusions and Future Work

37

Block-Level Relaxation

•  Block-level vs. Gate-level circuits

gr gl pl pr (gl , pl)

(gr , pr)

(gout , pout)

2 2

2

gout pout

Block-level circuit Gate-level circuit

Consists of large granularity blocks Consists of simple gates

 Blocks have multiple outputs Gates have single output

P/G block in prefix adders Gate-level implementation of P/G block
38

Why Relaxation at Block-Level?

•  Like gate-level relaxation: blocks are either
–  input complete: wait for all inputs to arrive

–  relaxed: eager, do not wait for all inputs to arrive

•  New idea: 3rd possibility
–  “partially-eager”:

•  input complete: each input vector acknowledged on some output

•  partially-eager: allows some outputs to fire early

39

Block-Level Relaxation Example

•  Basic approach = direct extension of gate-level relaxation
–  No output in robust block fires before all inputs arrive

a0 b0 c1 a0 b1 c0 a0 b1 c1 a1 b0 c0 a1 b0 c1 a1 b1 c0 a1 b1 c1 a0 b0 c0

a b c

z w

z = a + b + c
w = abc

z0 z1 w0
w1

Block example

C C C C C C C C

40

Input-complete
(non-eager)

Block-Level Relaxation Example

•  Basic approach = direct extension of gate-level relaxation
–  No output in robust block fires before all inputs arrive

a0 b0 c1 a0 b1 c0 a0 b1 c1 a1 b0 c0 a1 b0 c1 a1 b1 c0 a1 b1 c1 a0 b0 c0

a b c

z w

z = a + b + c
w = abc

z0 z1 w0
w1

Input-complete
(non-eager)

a0 b0 c0 a1 b1 c1 a0 b0 c0 a1 b1 c1

Input-incomplete
(eager) z1 z0 w0 w1

C C C C C C C C

C C

41

Block-Level Relaxation Example
•  New Option #1: “Biased Approach”

–  In biased implementation of blocks, only one output is implemented
in a robust way; other outputs are eager-evaluating

a0 b0 c1 a0 b1 c0 a0 b1 c1 a1 b0 c0 a1 b0 c1 a1 b1 c0 a1 b1 c1 a0 b0 c0

a b c

z w

z = a + b + c
w = abc

z0 z1 w0 w1

Block example

a0 b0 c0

Output z: waits for all inputs (“non-eager”)
Output w: early evaluating (“eager”)

C C C C C C C C

42

Input-complete block
(and partially eager!)

Block-Level Relaxation Example
•  New Option #2: “Distributive Approach”

•  outputs jointly share responsibility to detect arrival of all input vectors
•  each block output: also partially “eager”!

a b c

z w

z = a + b + c
w = abc

Block example
43

Output z: waits for inputs a/b (otherwise eager)
Output w: waits for inputs b/c (otherwise eager)

a0 b1 a1 b0 a1 b1 a0 b0 c0

z0 z1 w0 w1

C C C C

a0 b0 c1

C

b0 c0 b1 c0 b0 c1

C C C

a0 b1 c1

C

a1 b1 c1

C

Input-complete block
(and partially eager!)

Summary: Why Relaxation at Block-Level?

Gate-level
relaxation

Block-level
relaxation

(NEW)

Single Boolean gate

Input-complete
dual-rail impl.
(non-eager)

Input-incomplete
dual-rail impl.

(eager)

More optimization opportunities + larger design space

Single Boolean block

Input-complete
dual-rail impl.
(non-eager)

Input-incomplete
dual-rail impl.

(eager)

Input-complete
dual-rail impl.

(partially-eager)

44

Block- vs Gate-Level Relaxation Example

Gate-level 8-bit
Brent-Kung adder circuit
(Initial Boolean network)

•  Gate-level relaxation example
– 

45

Block- vs Gate-Level Relaxation Example

Gate-level 8-bit
Brent-Kung adder circuit
w/ relaxed gates marked

•  Gate-level relaxation example
– 

46

Block- vs Gate-Level Relaxation Example

Block-level 8-bit
Brent-Kung adder circuit
(Initial Boolean network)

•  Block-level relaxation example
– 

47

Block- vs Gate-Level Relaxation Example

Block-level 8-bit
Brent-Kung adder circuit
w/ relaxed blocks marked

•  Block-level relaxation example
– 

48

Outline

1.  Introduction

2.  Background: Asynchronous Threshold Networks

3.  Gate-Level Relaxation

4.  Block-Level Relaxation

5.  Experimental Results

6.  Conclusions and Future Work

49

Experimental Results: Gate-Level Relaxation

Original Boolean netwo
rk

Unoptimized DIMS circuit Optimization Run

Relaxed n
odes min.

Area min. Delay opt.

name #i/#o/#g # full blo
cks

area delay # full blocks area delay

C1908 33/25/462 343 94532 30.0 180 58618 25.9

C3540 50/22/1147 911 281918 46.0 476 189612 38.7

C5315 178/123/1659 1259 335801 32.7 727 235391 28.5

C6288 32/32/3201 2385 567010 133.6 1246 361478 106.1

C7552 207/108/2155 1677 427101 44.8 1042 305203 43.4

dalu 75/16/756 633 201912 20.0 346 144288 14.8

des 256/245/2762 2329 712145 23.2 1157 462165 19.5

K2 45/43/684 597 222326 18.9 289 131498 14.0

t481 16/1/510 476 154466 20.8 211 99514 17.5

vda 17/39/383 309 121947 17.7 137 69231 15.7

Average percentage 51.8% 65.1% 83.9%

•  Results for DIMS-style asynchronous circuits

(selected MCNC combinational benchmarks)

Experimental Results: Gate-Level Relaxation

Original Boolean netwo
rk

NCL circuit Optimization Run

Relaxed n
odes min.

Area min. Delay opt.

name #i/#o/#g # full blo
cks

area Delay # full blocks area delay

C1908 33/25/462 343 55940 33.3 180 37917 28.3

C3540 50/22/1147 911 189970 51.0 476 147575 42.8

C5315 178/123/1659 1259 189370 36.4 727 154238 31.0

C6288 32/32/3201 2385 264750 151.1 1246 203490 123.0

C7552 207/108/2155 1677 224790 48.8 1042 180362 46.9

dalu 75/16/756 633 140190 21.7 346 113949 15.5

des 256/245/2762 2329 364812 24.8 1157 358692 20.9

K2 45/43/684 597 175590 20.2 289 108765 14.8

t481 16/1/510 476 109000 22.1 211 84655 17.7

vda 17/39/383 309 100230 19.0 137 60214 15.7

Average percentage 51.8% 74.1% 82.3%

•  Results for NCL asynchronous circuits
–  (style used at Theseus Logic)

(selected MCNC combinational benchmarks)

Experimental Results: Gate-Level Relaxation

•  Minimizing Number of Relaxed Nodes:
–  DIMS circuits: 48.2% relaxed
–  NCL circuits: 48.2% relaxed

•  Area minimization:
–  DIMS circuits: 34.9% improvement
–  NCL circuits: 25.9% improvement

•  Critical Path Delay optimization:
–  DIMS circuits: 16.1% improvement
–  NCL circuits: 17.7% improvement

 No change to overall timing-robustness of circuits

Experimental Results: Block-Level Relaxation

Original Boolean network Relaxed gate-level
dual-rail circuit

Relaxed block-level
dual-rail circuit

name #i/#o/#g area critical delay area critical delay

8-b Brent-Kung 32/18/49 4688.6 7.48 6094.1 6.64

16-b Brent-Kung 4/34/110 10396.8 10.69 13587.8 9.65

8-b Kogge-Stone 32/18/67 6341.8 5.57 9624.9 5.84

16-b Kogge-Stone 64/34/179 16571.5 6.99 22596.4 7.57

8-b unopt. mult 32/16/323 28828.4 25.69 24998.4 23.52

16-b unopt. mult 64/32/1411 125915.0 55.87 108728.0 52.29

8-b opt. mult 32/16/320 28523.1 20.98 24745.0 15.44

16-b opt. mult 64/32/1408 125610.0 46.70 108474.0 32.97

Average percentage 110.8% 91.2%

Experiment #2: Gate-level vs. Block-level relaxation
–  Evaluation on several arithmetic circuits:

•  Brent-Kung/Kogge-Stone adders, combinational multipliers

–  Block-relaxation had 8.8% better delay with 10.8% worse area (avg.),
 compared to gate-level relaxation

53

Experimental Results (cont.)

Original Boolean network Relaxed gate-level
dual-rail circuit

Relaxed block-level
dual-rail circuit

name #i/#o/#g area critical delay area critical delay

8-b Brent-Kung 32/18/49 4688.6 7.48 6094.1 6.64

16-b Brent-Kung 4/34/110 10396.8 10.69 13587.8 9.65

8-b Kogge-Stone 32/18/67 6341.8 5.57 9624.9 5.84

16-b Kogge-Stone 64/34/179 16571.5 6.99 22596.4 7.57

8-b unopt. mult 32/16/323 28828.4 25.69 24998.4 23.52

16-b unopt. mult 64/32/1411 125915.0 55.87 108728.0 52.29

8-b opt. mult 32/16/320 28523.1 20.98 24745.0 15.44

16-b opt. mult 64/32/1408 125610.0 46.70 108474.0 32.97

Average percentage 110.8% 91.2%

Experiment #2: Gate-level vs. Block-level relaxation
–  Block-relaxation had 8.8% better delay with 10.8% worse area (avg.),

 compared to gate-level relaxation

–  For 16-bit multiplier, 29.5% delay improvement

54

Experimental Results (cont.)

Original Boolean network Relaxed gate-level
dual-rail circuit

Relaxed block-level
dual-rail circuit

name #i/#o/#g area critical delay area critical delay

8-b Brent-Kung 32/18/49 4688.6 7.48 6094.1 6.64

16-b Brent-Kung 4/34/110 10396.8 10.69 13587.8 9.65

8-b Kogge-Stone 32/18/67 6341.8 5.57 9624.9 5.84

16-b Kogge-Stone 64/34/179 16571.5 6.99 22596.4 7.57

8-b unopt. mult 32/16/323 28828.4 25.69 24998.4 23.52

16-b unopt. mult 64/32/1411 125915.0 55.87 108728.0 52.29

8-b opt. mult 32/16/320 28523.1 20.98 24745.0 15.44

16-b opt. mult 64/32/1408 125610.0 46.70 108474.0 32.97

Average percentage 110.8% 91.2%

Experiment #2: Gate-level vs. block-level relaxation
–  Block-relaxation had 8.8% better delay with 10.8% worse area (avg.),

 compared to gate-level relaxation
–  For 16-bit multiplier, 29.5% delay improvement
–  For multipliers, 14.5% smaller area, on average

55

Conclusion
•  Local Relaxation Technique:

–  Optimization technique for robust asynchronous threshold circuits

–  Relaxes overly-restrictive style: selective use of “eager evaluation”

–  Can target three different cost functions:
•  # relaxed nodes, area, critical path delay

–  CAD tool developed/released: “ATN-OPT”

–  Gate-level relaxation: exhibits significant improvements
•  48.2% of gates relaxed (avg.)
•  25.9% area improvement (vs. NCL custom mapping)
•  17.7% delay improvement (vs. NCL custom mapping)

–  Block-level relaxation:
•  8.8% additional delay improvement (best: 29.5%)
•  10.8% additional area overhead (best: 14.5% reduction)

56
No change to overall timing-robustness of circuits

